St Alban & St Stephen Catholic Primary School & Nursery

School Written Calculations Policy

Approved by:	Full Governing Body	Date: September 2025
Last reviewed on:	September 2022	
Next review due by:	September 2025	

Learning Intention

Our aim at St Alban and St Stephen Primary School is that children will learn to be confident in exploring and using a wide range of maths skills that they can build on in their future learning and use in their adult lives.

The purpose of Maths is the pursuit for truth and the thinking skills developed through the Maths Curriculum should inspire learners to be innovative, creative, critical and analytical learners. Enjoying the beauty of Maths enables learners to engage with the transcendent dimensions of life. It will inspire them to become the pioneers and inventors of today and the future.

Rationale

This policy outlines a model progression through written strategies for addition, subtraction, multiplication and division in line with the National Curriculum 2014. Through the policy, we aim to link key manipulatives and representations in order that the children can be vertically accelerated through each strand of calculation. This calculation policy will help with consistency of approach, enabling children to progress stage by stage through models and representations they recognise from previous teaching, allowing for deeper conceptual understanding and fluency. As children move at the pace appropriate to them, teachers will be presenting strategies and equipment appropriate to children's level of understanding. However, it is expected that the majority of children in each class will be working at age-appropriate levels as set out in the National Curriculum 2014 and in line with school policy. Maths is taught using the 'Hertfordshire Essentials' scheme of work and daily maths fluency sessions.

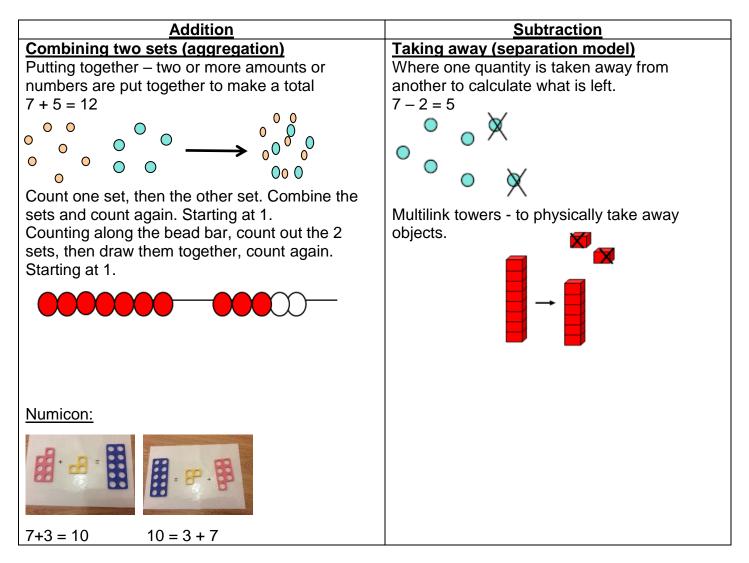
The importance of mental mathematics

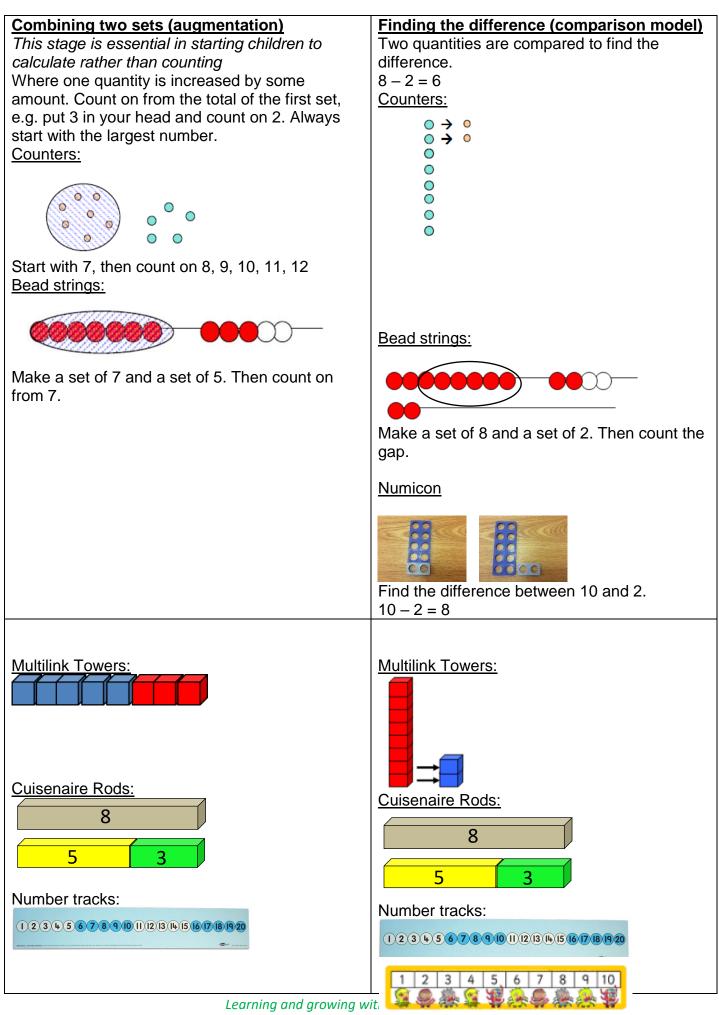
While this policy focuses on written calculations in mathematics, we recognise the importance of the mental strategies and known facts that form the basis of all calculations. The following checklists outline the key skills and number facts that children are expected to develop throughout the school.

To add and subtract successfully, children should be able to:

- recall all addition pairs to 9 + 9 and number bonds to 10
- recognise addition and subtraction as inverse operations
- add mentally a series of one digit numbers (e.g. 5 + 8 + 4)
- add and subtract multiples of 10 or 100 using the related addition fact and their knowledge of place value (e.g. 600 + 700, 160 — 70)
- partition 2 and 3 digit numbers into multiples of 100, 10 and 1 in different ways (e.g. partition 74 into 70 + 4 or 60 + 14)
- use estimation by rounding to check answers are reasonable

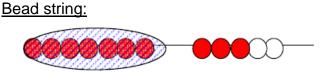
To multiply and divide successfully, children should be able to:


- · add and subtract accurately and efficiently
- recall multiplication facts to $12 \times 12 = 144$ and division facts to $144 \div 12 = 12$
- use multiplication and division facts to estimate how many times one number divides into another etc.
- know the outcome of multiplying by 0 and by 1 and of dividing by 1
- understand the effect of multiplying and dividing whole numbers by 10, 100 and later 1000
- recognise factor pairs of numbers (e.g. that $15 = 3 \times 5$, or that $40 = 10 \times 4$) and increasingly able to recognise common factors
- derive other results from multiplication and division facts and multiplication and division by 10 or 100 (and later 1000)
- notice and recall with increasing fluency inverse facts
- partition numbers into 100s, 10s and 1s or multiple groupings
- understand how the principles of commutative, associative and distributive laws apply or do not apply to multiplication and division
- understand the effects of scaling by whole numbers and decimal numbers or fractions
- · understand correspondence where n objects are related to m objects
- · investigate and learn rules for divisibility


Progression in addition and subtraction

Addition and subtraction are connected.

Addition names the whole in terms of the parts and subtraction names a missing part of the whole.

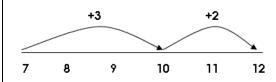


	Start with the smaller number and count the gap to the larger number.
Start on 5 then count on 3 more	1 set within another (part-whole model) The quantity in the whole set and one part are known, and may be used to find out how many are in the unknown part. $8 - 2 = 6$ Counters: 0 8 - 2 = 6 8 - 2 = 6 Bead strings:

Bridging through 10s

This stage encourages children to become more efficient and begin to employ known facts.

7 + 5 is decomposed / partitioned into 7 + 3 + 2.


The bead string illustrates 'how many more to the next multiple of 10?' (children should identify how their number bonds are being applied) and then 'if we have used 3 of the 5 to get to 10, how many more do we need to add on? (ability to decompose/partition all numbers applied)

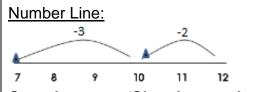
Number track:

12345678901123145617181920

Steps can be recorded on a number track alongside the bead string, prior to transition to number line.

Number line

Bead string:

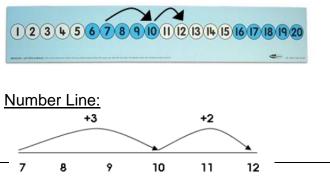


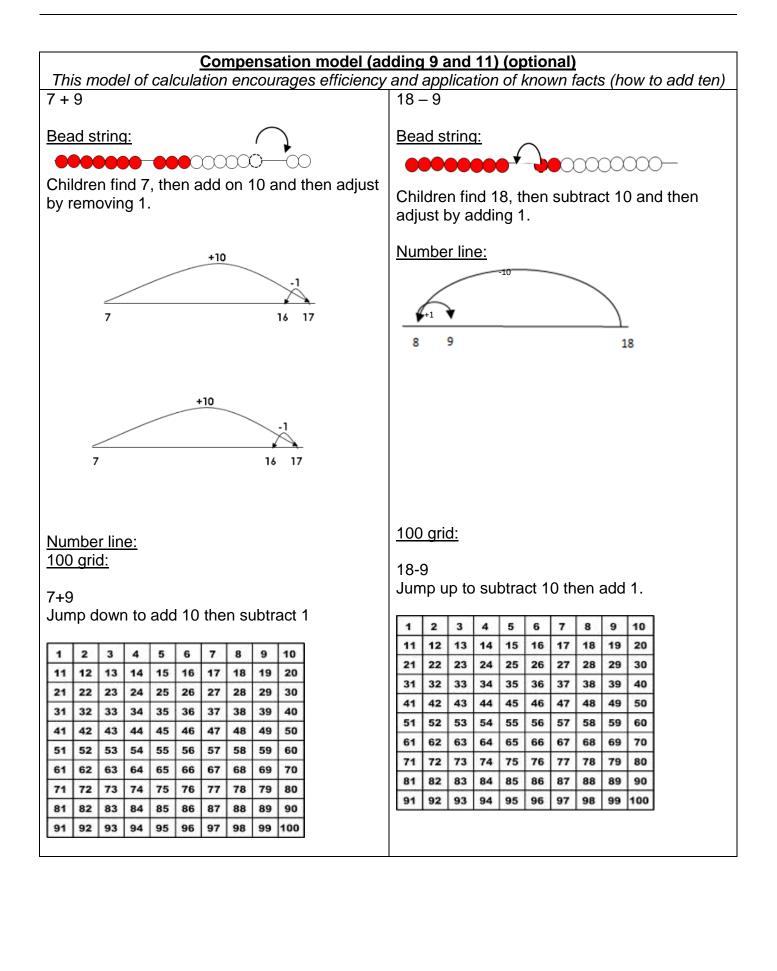
12 - 7 is decomposed / partitioned in 12 - 2 - 5.

The bead string illustrates 'from 12 how many to the last/previous multiple of 10?' and then 'if we have used 2 of the 7 we need to subtract, how many more do we need to count back? (ability to decompose/partition all numbers applied)

Number Track:

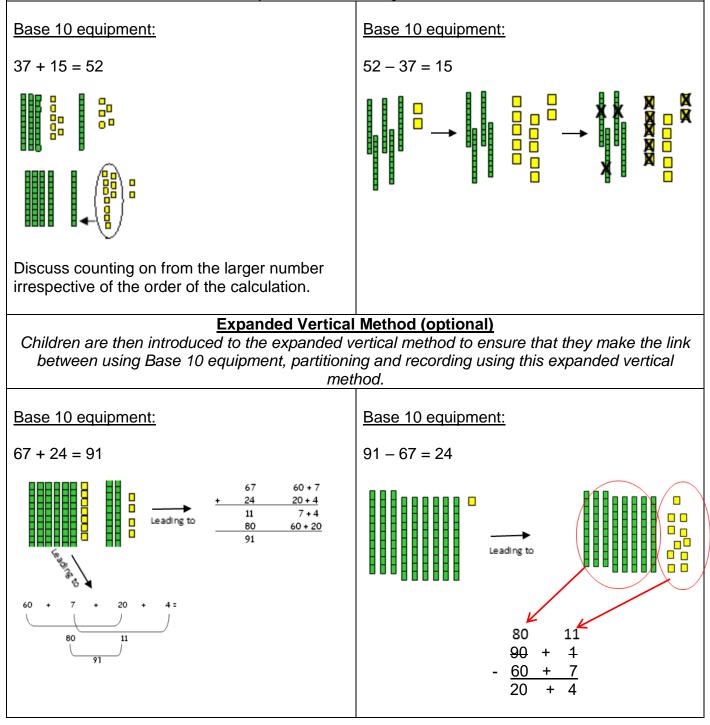
Steps can be recorded on a number track alongside the bead string, prior to transition to number line.

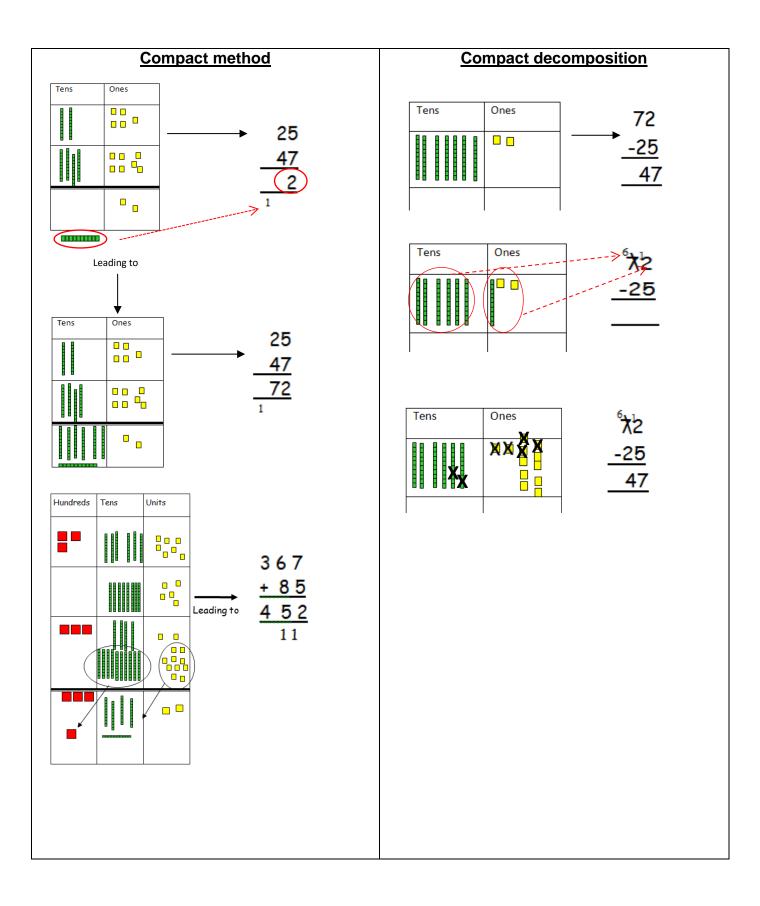


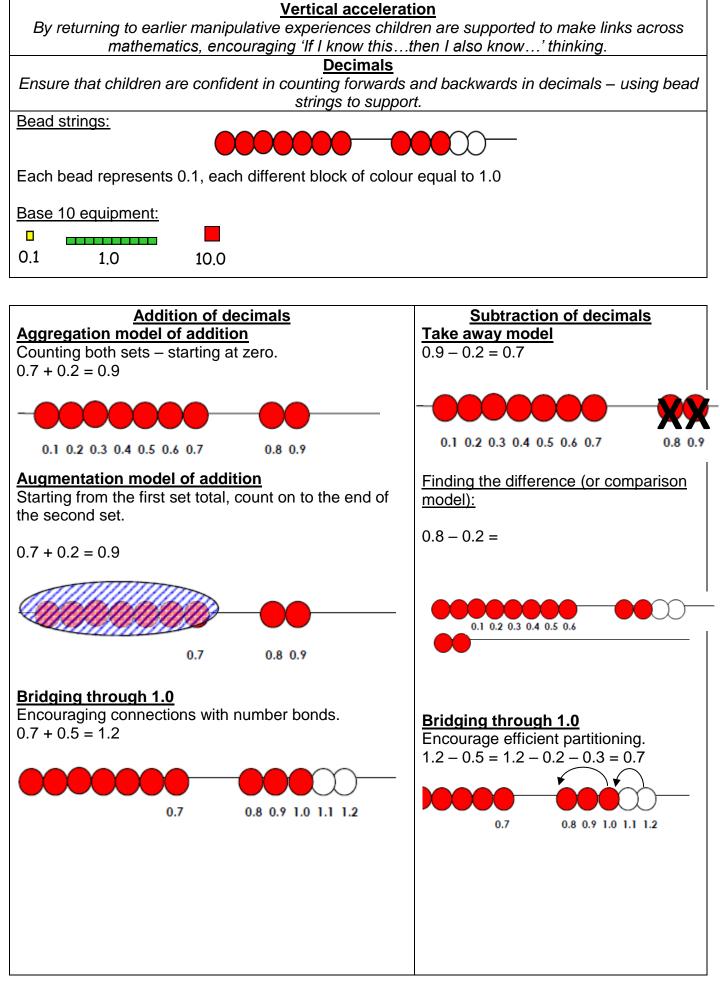

Bead string:

12 - 7 becomes 7 + 3 + 2. Starting from 7 on the bead string 'how many more to the next multiple of 10?' (children should recognise how their number bonds are being applied), 'how many more to get to 12?'.

Number Track:

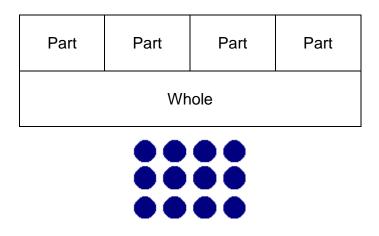



Working with larger numbers Tens and ones + tens and ones


Ensure that the children have been transitioned onto Base 10 equipment and understand the abstract nature of the single 'tens' sticks and 'hundreds' blocks

Bridging with larger numbers

Once secure in partitioning for addition, children begin to explore exchanging. What happens if the ones are greater than 10? Introduce the term 'exchange'. Using the Base 10 equipment, children exchange ten ones for a single tens rod, which is equivalent to crossing the tens boundary on the bead string or number line.



Partitioning	Partitioning
3.7 + 1.5 = 5.2	5.7 - 2.3 = 3.4
	Leading to
Gradation of difficulty- addition:	Gradation of difficulty- subtraction:
1. No exchange	1. No exchange
2. Extra digit in the answer	2. Fewer digits in the answer
3. Exchanging ones to tens	3. Exchanging tens for ones
4. Exchanging tens to hundreds	4. Exchanging hundreds for tens
5. Exchanging ones to tens and tens to hundreds	5. Exchanging hundreds to tens and tens to ones
6. More than two numbers in calculation	6. As 5 but with different number of digits
7. As 6 but with different number of digits	7. Decimals up to 2 decimal places (same number of decimal places)
8. Decimals up to 2 decimal places (same number of decimal places)	8. Subtract two or more decimals with a range of decimal places
9. Add two or more decimals with a range of decimal places	

Progression in Multiplication and Division

Multiplication and division are connected. Both express the relationship between a number of equal parts and the whole.

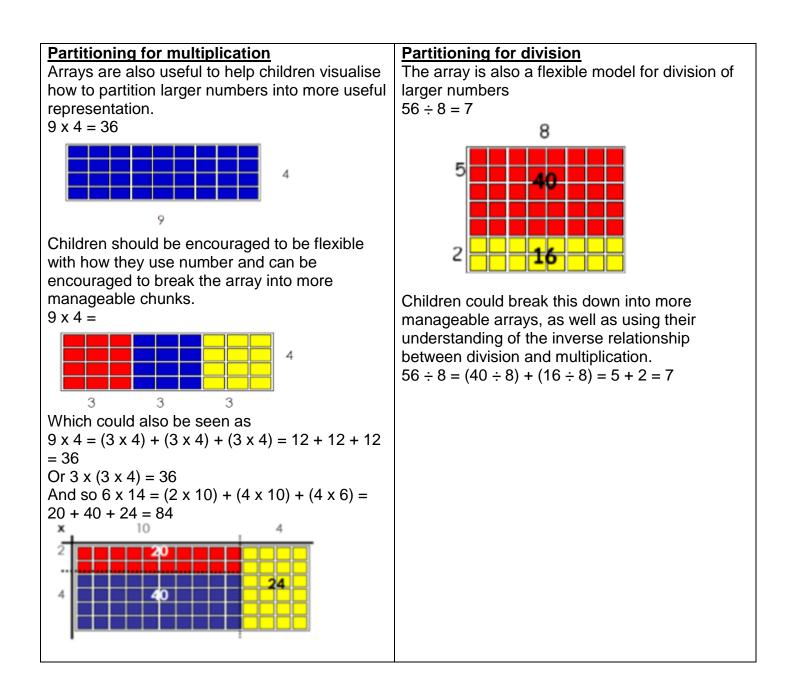
The following array, consisting of four columns and three rows, could be used to represent the number sentences: -

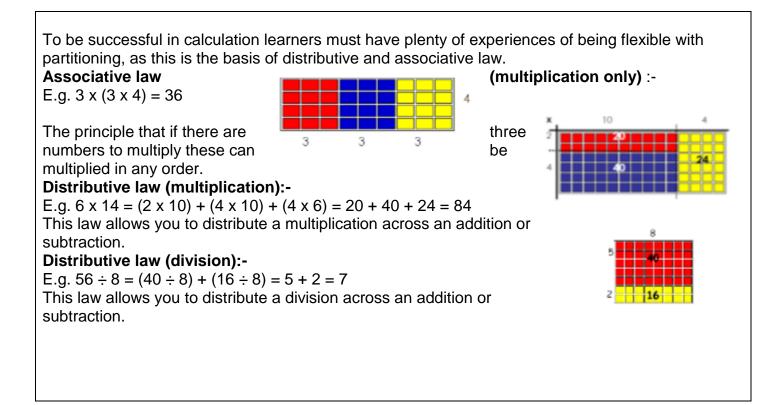
3 x 4 = 12,

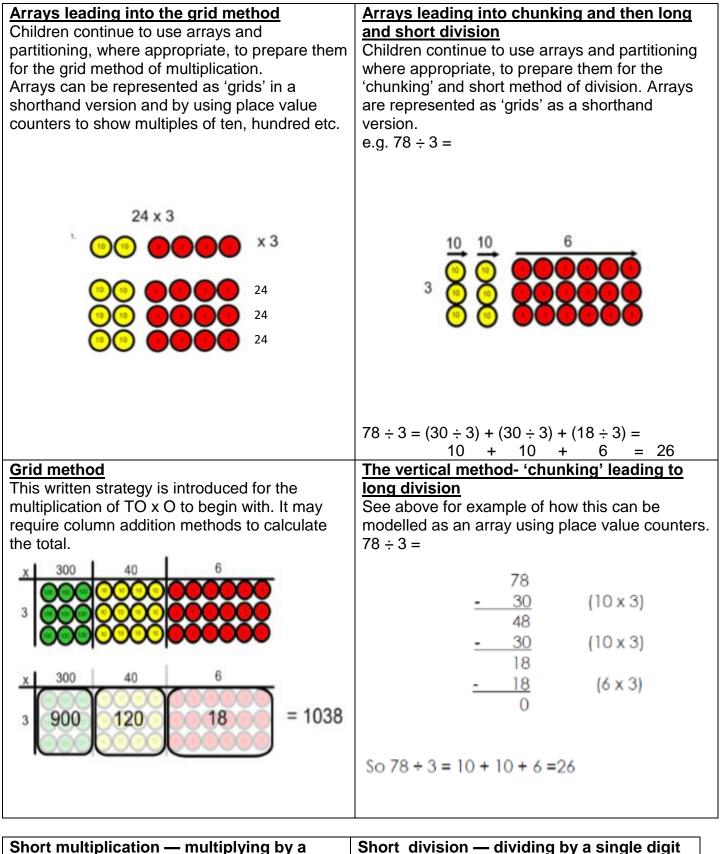
- 4 x 3 =12,
- 3 + 3 + 3 + 3 = 12,
- 4 + 4 + 4 = 12.

And it is also a model for division

 $12 \div 4 = 3$

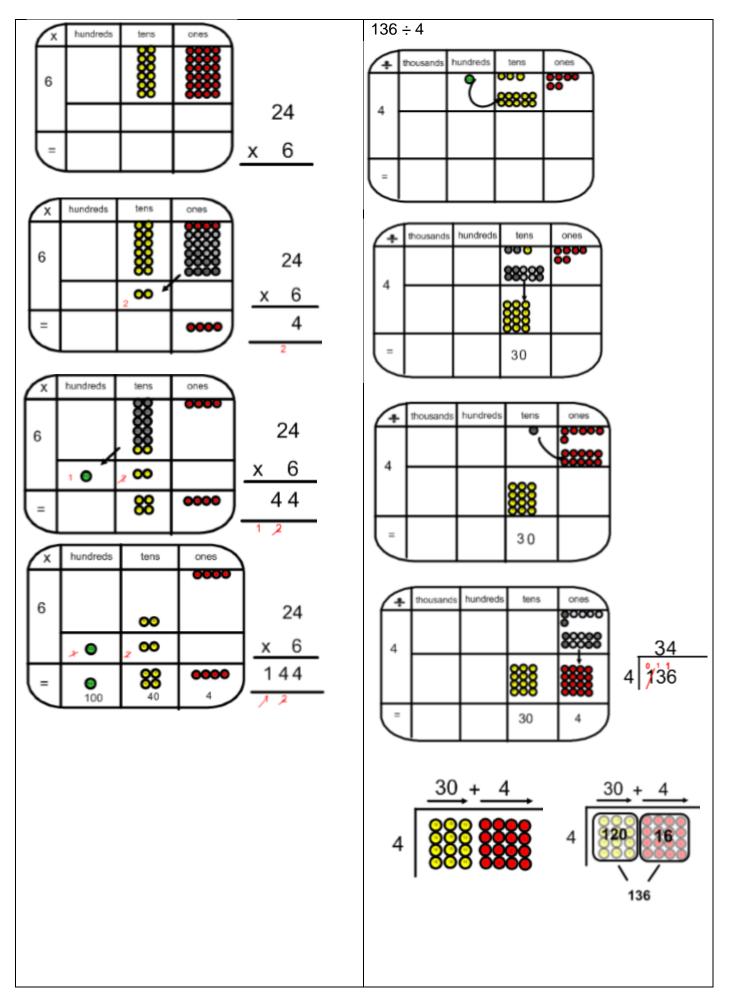

 $12 \div 3 = 4$


- 12 4 4 4 = 0
- 12 3 3 3 3 = 0


Multiplication	Division
Early experiences Children will have real, practical experiences of handling equal groups of objects and counting in 2s, 10s and 5s. Children work on practical problem solving activities involving equal sets or groups.	Children will understand equal groups and share objects out in play and problem solving. They will count in 2s, 10s and 5s.
Repeated addition (repeated aggregation) 3 times 5 is 5 + 5 + 5 = 15 or 5 lots of 3 or 5 x 3 Children learn that repeated addition can be shown on a number line. Children learn that repeated addition can be shown on a bead string. Children also learn to partition totals into equal trains using Cuisenaire Rods 5x3=15	Sharing equally 6 sweets get shared between 2 people. How many sweets do they each get? A bottle of fizzy drink shared equally between 4 glasses. Image: state of the state of t
Numicon: Find 4 fives. $4 \times 5 = 20$	Numicon: How many fives are there in 20? $20 \div 5 = 4$

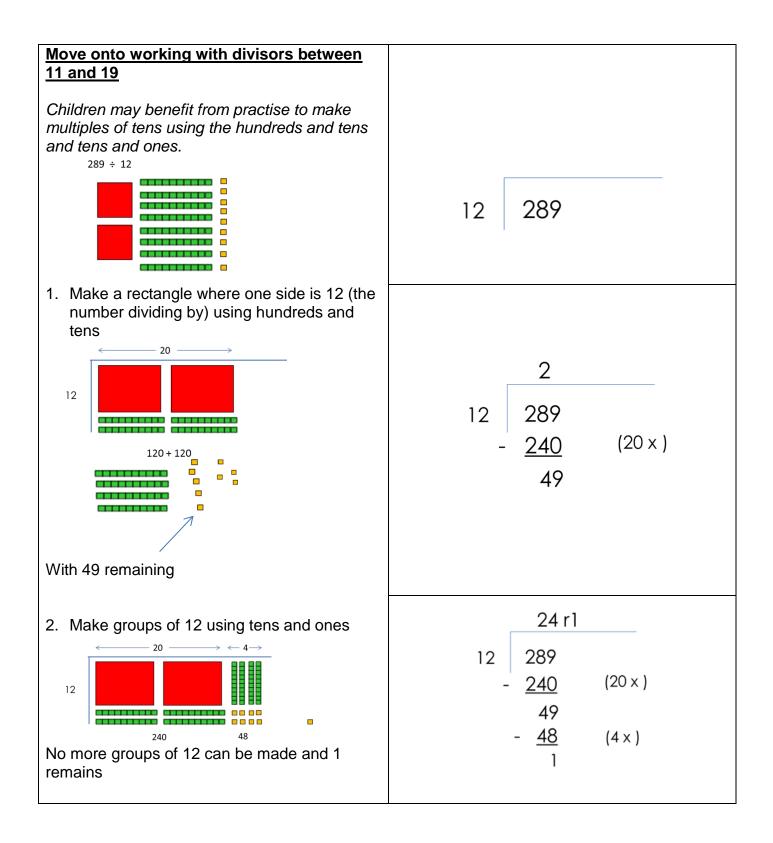
Scaling This is an extension of augmentation in addition, except, with multiplication, we increase the quantity by a scale factor not by a fixed amount. For example, where you have 3 giant marbles and you swap each one for 5 of your friend's small marbles, you will end up with 15 marbles. This can be written as: 1 + 1 + 1 = 3 scaled up by 5 $5 + 5 + 5 = 15For example, find a ribbon that is 4 times as longas the blue ribbon.We should also be aware that if we multiply by anumber less than 1, this would correspond to ascaling that reduces the size of the quantity. Forexample, scaling 3 by a factor of 0.5 wouldreduce it to 1.5, corresponding to 3 \times 0.5 = 1.5.$	Repeated subtraction using a bead string or number line 12 ÷ 3 = 4 The bead string helps children with interpreting division calculations, recognising that 12 ÷ 3 can be seen as 'how many 3s make 12?' Cuisenaire Rods also help children to interpret division calculations.
	Grouping involving remaindersChildren move onto calculations involving remainders. $13 \div 4 = 3 r1$
	Or using a bead string see above.

Commutativity Children learn that 3 x 5 has the same total as 5 x 3. This can also be shown on the number line. 3 x 5 = 15 5 x 3 = 15	Children learn that division is not commutative and link this to subtraction.
Arrays Children learn to model a multiplication calculation using an array. This model supports their understanding of commutativity and the development of the grid in a written method. It also supports the finding of factors of a number. $000005 \times 3 = 15$ $3 \times 5 = 15$	Children learn to model a division calculation using an array. This model supports their understanding of the development of partitioning and the 'bus stop method' in a written method. This model also connects division to finding fractions of discrete quantities. 0000015+3=5 0000015+5=3
Inverse operationsTrios can be used to model the 4 related multiplication and division facts. Children learn to state the 4 related facts. $3 \times 4 = 12$ $4 \times 3 = 12$ $12 \div 3 = 4$ $12 \div 4 = 3$ Children use symbols to represent unknown numbers and complete equations using inverse operations. They use this strategy to calculate the missing numbers in calculations. $x \times 5 = 20$ $3 \times \Delta = 18$ $24 \div 2 = 0$ $15 \div 0 = 3$ $\Delta \div 10 = 8$	This can also be supported using arrays: e.g. 3 X ? = 12

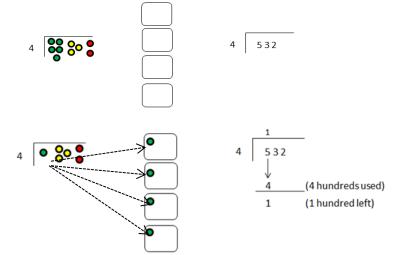


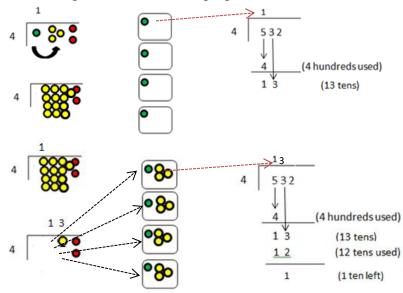
<u>onore maniprication — maniprying by a</u>	<u>onore draision — draiding by a single digit</u>
single digit	Whereas we can begin to group counters into
The array using place value counters becomes	an array to show short division working
the basis for understanding short multiplication	

exchanging 24 x 6

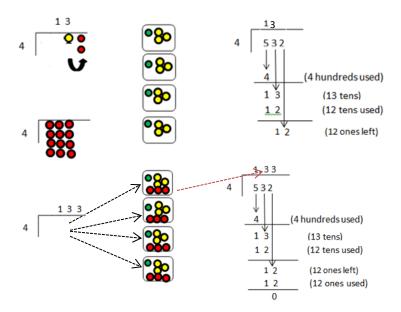

first without exchange before moving onto

Learning and growing with God by our side


	One detiens of difficulty (also at division)
Gradation of difficulty (short multiplication)	Gradation of difficulty (short division)
1. TO x O no exchange	1. TO ÷ O no exchange no remainder
2. TO x O extra digit in the answer	2. TO ÷ O no exchange with remainder
3. TO x O with exchange of ones into tens	3. TO ÷ O with exchange no remainder
4. HTO x O no exchange	4. TO ÷ O with exchange, with remainder
5. HTO x O with exchange of ones into tens	5. Zero in the quotient e.g. 816 ÷ 4 = 204
 HTO x O with exchange of tens into hundreds 	6. As 1-5 HTO ÷ O
7. HTO x O with exchange of ones into tens and tens into hundreds	 7. As 1-5 greater number of digits ÷ O 8. As 1-5 with a decimal dividend e.g. 7.5 ÷ 5 or 0.12 ÷ 3
8. As 4-7 but with greater number digits x O	9. Where the divisor is a two digit number
9. O.t x O no exchange	
10. O.t with exchange of tenths to ones	See below for gradation of difficulty with remainders
11. As 9 - 10 but with greater number of digits which may include a range of decimal places x O	
	Dealing with remainders
	 Remainders should be given as integers, but children need to be able to decide what to do after division, such as rounding up or down accordingly. e.g.: I have 62p. How many 8p sweets can I buy? Apples are packed in boxes of 8. There are 86 apples. How many boxes are needed?
	Gradation of difficulty for expressing remainders
	 Whole number remainder Remainder expressed as a fraction of the divisor Remainder expressed as a simplified fraction Remainder expressed as a decimal
Long multiplication—multiplying by more than one digit Children will refer back to grid method by using place value counters or Base 10 equipment with no exchange and using synchronised modelling of written recording as a long multiplication model before moving to TO x TO	 Long division —dividing by more than one digit Children should be reminded about partitioning numbers into multiples of 10, 100 etc. before recording as either:- Chunking model of long division using Base 10 equipment


etc. Chunking model of long division using Base 1 This model links strongly to the array representa of the array is unknown and by arranging the Ba discover this unknown. The written method show children make links.	tion; so for the calculation 72 \div 6 = ? - one side se 10 equipment to make the array we can Id be written alongside the equipment so that
Begin with divisors that are between 5 and 9 72 ÷ 6 = 12	
	6 72
 Make a rectangle where one side is 6 (the number dividing by) – grouping 6 tens 	1
10	6 72
6 60	<u>- 60</u> (10 x) 12
After grouping 6 lots of 10 (60) we have 12 left over	
2. Exchange the remaining ten for ten ones 3. $\xrightarrow{\text{exchange}}$	
 4. Complete the rectangle by grouping the remaining ones into groups of 6 	1 2 6 72 <u>- 60</u> (10 x)
	12 <u>- 12</u> (2 x) 0

Sharing model of long division using place value counters


Starting with the most significant digit, share the hundreds. The writing in brackets is for verbal

Moving to tens - exchanging hundreds for tens means that we now have a total of 13 tens

Moving to ones, exchange tens to ones means that we now have a total of 12 ones counters (hence the arrow)

